
A scalable multilevel algorithm for graph
clustering and community structure detection

Hristo N. Djidjev1 ?

Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract. One of the most useful measures of cluster quality is the
modularity of the partition, which measures the difference between the
number of the edges joining vertices from the same cluster and the ex-
pected number of such edges in a random (unstructured) graph. In this
paper we show that the problem of finding a partition maximizing the
modularity of a given graph G can be reduced to a minimum weighted
cut problem on a complete graph with the same vertices as G. We then
show that the resulted minimum cut problem can be efficiently solved
with existing software for graph partitioning and that our algorithm finds
clusterings of a better quality and much faster than the existing cluster-
ing algorithms.

1 Introduction

One way to analyze and understand the information contained in the huge
amount of data available on the WWW and the relationships between the indi-
vidual items is to organize them into ”communities,” maximal groups of related
items. Determining the communities is of great theoretical and practical impor-
tance since they correspond to entities such as collaboration networks, online
social networks, scientific publications or news stories on a given topic, related
commercial items, etc. Communities also arise in other types of networks such
as computer and communication networks (the Internet, ad-hoc networks) and
biological networks (protein interaction networks, genetic networks).

The problem of identifying communities in a network is usually modeled as
a graph clustering (GC) problem, where vertices correspond to individual items
and edges describe relationships. Then the communities correspond to clusters
with a lot of edges between vertices belonging to the same subgraph (called in-
cluster edges) and fewer edges between vertices from different subgraphs (called
between-cluster edges). The GC problem has been intensively studied in the
recent years in relation to its applications in the analysis of networks. Girvan
and Newman propose in [11], [18] algorithms based on the betweenness of the
edges of a graph, a characteristic that measures the number of the shortest paths
in a graph that use any given edge. In [15] Newman describes an algorithm based
on a characteristic of clustering quality called modularity, a measure that takes
? This work has been supported by the Department of Energy under contract W-705-

ENG-36.

into account the number of in-cluster edges and the expected number of such
edges. (We formally define and discuss modularity in more detail in the next
section.) A faster version of the algorithm from [15] was described by Clauset
et al. in [6]. Several algorithms have been proposed based on the eigenvectors of
the graph Laplacian, e.g., [19], [16]. In all previous cases the algorithms reported
in the literature are either not fast enough, or are inaccurate.

In this paper we will describe a new approach for GC that uses our newly dis-
covered relationship between the GC and the minimum weighted cut problems.
The minimum weighted cut (MWC) problem is, given a graph G = (V,E) with
real weights on its edges, find a partition of V such that the set of all edges of G
that join vertices from different sets of the partition, called a cut of the partition,
is of minimum weight. GC looks related to the MWC problems since, in a good
quality clustering, the weight of the edges between different sets of the partition
(the cut) should be small compared to the weight of the edges inside the sets.
But the MWC problem can not be directly applied to solve the GC problem
since it does not take into account the sizes of the subgraphs induced by the
cut (e.g., it is likely that the minimum cut will consist of the edges incident to
a single vertex). There are some minimum cut based clustering algorithms, e.g.,
[9], that use maximum flow computations combined with heuristics, but they
are typically slower than modularity based algorithms, e.g. [6], and, moreover,
they cannot determine the optimal number of clusters and, instead, construct a
hierarchical decomposition of the set of all vertices of the graph.

In this paper we prove that the problem of finding a partition of a graph G
that maximizes the modularity can be reduced to the problem of finding a MWC
of a weighted complete graph on the same set of vertices as G. We then show
that the resulting minimum cut problem can be solved by modifying existing
fast algorithms for graph partitioning. We demonstrate by experiments that our
algorithm has generally a better quality and is much faster than the best existing
GC algorithms.

2 Our clustering algorithm

2.1 Graph clustering as a minimum cut problem

As there is no formal definition of clustering and what the clusters of a given
graph are, in general it is not possible to determine if a certain partition is the
”correct” clustering or which of two alternative partitions of a graph corresponds
to a better clustering. For that reason, researchers have used their intuition to
define measures for cluster quality that can be used for comparing different
partitions of the same graph. One such measure, introduced in [18,17], which
has received considerable attention recently, is the modularity of a graph. Given
an n-vertex m-edge graph G = (V (G), E(G)) and a partition P of V (G) into k
subsets (clusters) V1, . . . , Vk, the modularity Q(P) of P is a number defined as

Q(P) =
1
m

k∑
i=1

(|E(Vi)| − Ex(Vi,G)),

where E(Vi) is the set of all edges of G with endpoints in Vi and Ex(Vi,G) is the
expected number of such edges in a random graph with a vertex set Vi from a
given random graph distribution G. Q(P) measures the difference between the
number of in-cluster edges and the expected value of that number in a random
(e.g., without cluster structure) graph on the same vertex set. Larger values of
Q(P) correspond to better clusterings.

Having the definition of Q(P), we can formulate the clustering problem as
finding a partition P = {V1 ∪ . . . ∪ Vk} of V (G) such that

k∑
i=1

(|E(Vi)| − Ex(Vi,G)) → max . (1)

Clearly

max
P

{
k∑

i=1

(|E(Vi)| − Ex(Vi,G))}

= −min
P
{ −

k∑
i=1

(|E(Vi)| − Ex(Vi,G))}

= −min
P
{ (|E(G)| −

k∑
i=1

|E(Vi)|)− (|E(G)| −
k∑

i=1

Ex(Vi,G))}

= −min
P
{ |Cut(P)| − ExCut(P,G)},

where Cut(P) is defined as the cut of P and ExCut(P,G) the expected value of
Cut(P) for a random graph from G.

Hence, instead of problem (1), one can address the problem of finding a
partition P of G such that

|Cut(P)| − ExCut(P,G) → min . (2)

The last expression shows that we can solve (1) as a problem of finding a
MWC in a complete graph G′ with a vertex set V (G) and weight weight(i, j) on
any edge (i, j) ∈ E(G′) defined by

weight(i, j) =
{

1− pij , if (i, j) ∈ E(G)
−pij , if (i, j) 6∈ E(G), (3)

where pij is the probability that there is an edge between vertices i and j in a
random graph from the class G. Then, problem (1) is equivalent to the problem
of finding a partition P ′ of G′ such that

|Cut(P ′)| → min . (4)

We summarize these observations in the following theorem.

Theorem 1. The problem of finding a partition of a given graph G = (V,E) that
minimizes the modularity can be reduced in O(|V |+ |E|) time to the problem of
finding a minimum weight cut in a complete graph G′ = (V,E′) with edge weights
given by (3).

For the reduction time bound in Theorem 1 we assume that the edges of
E′ \ E are defined implicitly. There are several choices for G that have been
favored by various researchers. The random graph model G(n, p) of Erdös-Renyi
[7] defines n vertices and puts an edge between each pair with probability p.
Clearly, the expected number of edges of G(n, p) is

(
n
2

)
p. Hence, for a graph

with expected number of edges m

pij = p =
m(
n
2

) · (5)

One disadvantage of the G(n, p) model is that it fails to capture important
features of the real-world networks, in particular, the degree distribution. As has
been recently observed [3], many important types of networks like technological
networks (the Internet, the WWW), social networks (collaboration networks,
online social networks), biological networks (protein interactions) have degree
distributions that follow a power law, e.g., the fraction of the vertices that have
degree k > 0 is roughly proportional to αk−λ for some constants α and λ > 0.
Such networks are called scale-free. In comparison, the degrees of a random graph
from the G(n, p) model follow a Poisson distribution, i.e., the probability that
a given vertex has degree k is

(
n
k

)
pk(1− p)n−k and the expected degree of each

vertex is pn. Hence, the Erdös-Renyi model may not be suitable as a choice for
G when used for determining the community structure of graphs of the above
type.

One model that takes into account the degrees of the vertices is studied by
Chung and Lu in [5]. In that model, the probability that there is an edge between
a vertex i and a vertex j is

pij =
didj∑n
k=1 dk

, (6)

where d1, · · · , dn are positive reals corresponding to the degrees of the vertices
such that max1≤i≤n d2

i <
∑n

i=1 di. (The last condition guarantees that such a
graph exists if all numbers di are integers.) We will refer to that model as the
Chung-Lu (CL) model. Clearly, in the CL model, the expected degree of vertex
i is di, compared with pn (i.e., independent on i) in the G(n, p) model.

In the next section we will describe an efficient method for finding a MWC
of a graph G′ with weights on the edges satisfying (3) and pij defined by (5) or
(6).

2.2 Finding a MWC using multilevel graph partitioning

Above we established an important relationship between the graph clustering
and the MWC problems, i.e., that the problem of finding a partition of a given

graph that maximizes the modularity can be reduced to the problem of finding
a minimum weight cut. Most existing work on the MWC problem considers the
case where all weights are non-negative. The MWC problem in the case of non-
negative weights is known to be polynomially solvable, e.g., by using algorithms
for computing maximum flows [1]. In contrast, the MWC problem in case of real-
value weights is NP-hard and there is very little known for the general version of
the problem. Here we show that available heuristics for another related problem,
graph partitioning, can be adapted to solve this version of the MWC problem.

Overview of the multilevel partitioning method. Formally, the graph par-
titioning (GP) problem is, given a graph G = (V,E), find a partition (V1, V2) of
V such that ||V1| − |V2|| ≤ 1 (i.e., the partition is balanced) and Cut(V1, V2) is
minimized. (Some versions of the problem consider partitions of arbitrary car-
dinalities.) Note that, in comparison with the minimum cut problem, there is
the additional requirement for a balanced partition. Because of its important
applications, e.g., in high performance computing and VLSI design, GP is a
well-researched problem for which very efficient methods have been developed.
One such approach is the multilevel GP, which is both fast and accurate for a
wide class of graphs that appear in practical applications. Inspired by the multi-
grid method from computational mathematics, it has been used in the works
of Barnard and Simon [4], Hendrickson and Leland [10], Karypis and Kumar
[12,13], and others. The method for bisecting a graph consists of the following
three phases(Figure 2.2):
Coarsening phase. The original graph G is coarsened by partitioning it into
connected subgraphs and replacing each of the subgraphs by a single vertex and
replacing the set of the edges between any pair of shrunk subgraphs by a single
edge. Moreover, a weight of each new vertex (respectively edge) is assigned equal
to the sum of the weights of the vertices (respectively edges) that it represents.
(Weights on the original vertices of G will be defined depending on whether
the G(n, p) or the CL model has been used, as detailed below.) The resulting
graph is coarsened repeatedly by the same procedure until one gets a graph of a
sufficiently small size. Let G0 = G, G1, . . . , Gl be the resulting graph sequence.
Partitioning phase. The graph Gl is partitioned into two parts using any avail-
able partitioning method (e.g., spectral partitioning or the Kernighan-Lin (KL)
algorithm [14]).
Uncoarsening and refinement phase. The partition of Gl is projected on Gl−1.
Since the weight of each vertex of Gl is a sum of the weights of the corresponding
vertices of Gl−1, then the partition of Gl−1 will be balanced if the partition of
Gl is and the cut of both partitions will have the same weight. However, since
Gl−1 has more vertices than Gl, it has more degrees of freedom and, therefore, it
is possible to refine the partition of Gl−1 in order to reduce its cut size. For this
end, the projection of the partition of Gl is followed by a refinement phase, which
is usually based on the KL algorithm. In the same way, the resulted partition of
Gl−1 is converted into a partition of Gl−2 and refined, and so on until a partition
of G0 is found.

Coarsening

Un
co
ar
se
ni
ng

Partitioning

Fig. 1. The stages of multilevel partitioning.

Kernighan-Lin refinement. Since the refinement step is the most involved
part of the algorithm, and which ultimately determines its accuracy and effi-
ciency, we will describe it in more detail. It has been shown [13] that the KL
algorithm can be a good choice for performing the refinement.

The KL algorithms involves several iterations, each consisting of moving a
vertex from one set of the partition to the other. Let P = {P1, P2} be the current
partition. For each vertex u of the graph a gain for u is defined as

gain(u) =
∑

v∈N(u)\P (u)

weight(u, v)−
∑

v∈N(u)∩P (u)

weight(u, v), (7)

where N(u) is the set of all neighbors of u and P (u) is that set of P that contains
u. gain(u) measures how the weight of the cut will be affected if u is moved from
P (u) to the other set of P. The KL algorithm then selects a vertex w from the
smaller set of the partition with a maximum gain, moves it to the other set, and
updates the gains of the vertices adjacent to w. Moreover, w is marked so that
it will not be moved again during that refinement step. The process is continued
until either all vertices have been moved, or the 50 most recent moves have not
led to a better partition. At the end of the refinement step, the last s ≤ 50 moves
that have not improved the partition are reversed.

Implementation. The implementation of our algorithm for clustering is based
on the version of multilevel partitioning implemented by Karypis and Kumar
[12,13], which has been made freely available as a software package under the
name METIS. Note that graph partitioning, minimum cut, and clustering are

Problem Clustering Minimum Cut Graph Partitioning

Objective Minimize modularity Minimize cut size Minimize cut size

Balance of partition Sizes may differ Sizes may differ Equal sizes

Cardinality of partition To be computed To be computed An input parameter

Table 1. Comparison between the clustering, minimum cut, and partitioning
problems.

related, but with important differences problems, as illustrated in Table 1. We
already showed how the clustering problem can be reduced to a minimum cut
problem and here we will show how the resulting minimum cut problem can
be solved by a graph partitioning algorithm based on METIS. Because of the
differences between graph partitioning and MWC, we have to make some evi-
dent changes. For instance, since graph partitioning requires balanced partitions,
we have to drop the requirement for balance of the partition. We have also to
determine the cardinality of the partition that minimizes the cut size. But the
main implementation difficulty is related to the size of G′. Although the original
graph, G, is typically sparse, i.e., has n vertices and O(n) edges, the transformed
one, G′, is always dense, as it has

(
n
2

)
= Ω(n2) edges. The main challenge will

be to construct an algorithm whose complexity is close to linear on the size of
the original graph, rather than on the size of the transformed one. We have
shown that it is possible to simulate an execution of the multilevel algorithm on
G′ by explicitly maintaining information only about the edges from the original
graph G and implicitly taking into account the remaining edges by modifying
the formulae for computing weights and gains. For instance, if P = {P1, P2} is
a partition of V (G) and we have computed the value of the cut cut(P1, P2) of
G corresponding to P and maintain the values of n1 = |P1| and n2 = |P2|, then
the cut in G′ corresponding to P is

cut(P1, P2)− n1n2p

in the case of the G(n, p) model and hence can be computed in O(1) time. A
similar formula holds for the case of the CL model.

Clustering into an optimal number of clusters. The algorithm described
above is a bisection algorithm, i.e., it finds a partition (and hence clustering)
of the input graph into two parts. Our algorithm for an arbitrary number of
clusters uses the following recursive procedure. We run the bisection algorithm
described above and let P be the resulting partition. If P consists of only one
set (i.e., the original graph G does not have a good cluster partition), we are
done. Else, we run recursively the bisection algorithm on the two subgraphs G1

and G2 of G induced by the vertices of the two sets of P. It is important to
keep, during that recursive call, the weights of the edges computed during the
first iteration instead of recomputing them based on G1 and G2. The reason is
that the random graph model based on G will be different than those based on
G1 and G2 since formulae (5) and (6) will produce different values for pij . It

can be proven that, if the bisection algorithm finds a minimum bisection cut,
the recursive algorithm described above finds a minimum cut (of any number of
parts) and hence finds a clustering maximizing the modularity.

Time analysis. By using the analysis of Fiduccia and Mattheyses of the KL
algorithm from [8], it follows that clustering any network of n vertices and m
edges into two communities by our algorithm takes O(n log n + m) time, where
n and m are the numbers of the nodes and links of the network, respectively.
Finding a clustering in optimal number of k parts takes O((n log n + m)d) time,
where d is the depth of the dendrogram describing the clustering hierarchy.
Although the worst-case value of d can be Ω(k), typically d = O(log k) [6].

3 Experiments

We performed a number of experiments on randomly generated graphs in order to
measure the accuracy of our algorithm and its efficiency as well as to compare it
with previous algorithms. We chose Newman-Girvan algorithm [18] and Clauset-
Newman-Moore algorithm [6] since they are considered one of the best existing
algorithms and because of the code availability.

3.1 Comparison with Newman-Girvan algorithm

Following the experimental setting of [18], we generated random graphs with
128 vertices and 4 communities of size 32 each. The expected degree of any
vertex is 16, but the outdegree (the expected number of neighbors of a vertex
that belong to a different community) is set to i in the i-th experiment (i ≤ 16).
Hence, higher values of i correspond to graphs with weaker cluster structures.
The experiment is intended to measure the sensitivity of the algorithm to the
quality of clustering.

Outdegree Degree Newman-Girvan Ours

1 16 1.00 1.00

2 16 1.00 1.00

3 16 0.98 0.99

4 16 0.97 0.99

5 16 0.95 0.99

6 16 0.85 0.97

7 16 0.60 0.91

8 16 0.30 0.70

Table 2. Comparing the quality of the clustering of our algorithm and [18].

Table 2 compares the quality of the clusterings produced by Newman-Girvan’s
algorithm and ours. A clustering produced by any of the algorithms is consid-
ered ”correct” if it matches the original partition of communities from the graph

generation phase. (Note that, due to the probabilistic nature of the graphs, the
clustering that maximizes the modularity might be different from the original
partition, especially if the modularity is low.)

Our algorithm classifies correctly more than 99% of the edges for outdegrees
0, 1, 2, 3, 4, 5 and in all cases it is better than Newman-Girvan’s (more than twice
better for the case i = 8).

3.2 Comparison with Clauset-Newman-Moore algorithm

Table 3 compares the performance of our algorithm with Clauset, Newman, and
Moore’s algorithm [6]. That algorithm has the same quality of the clustering as
[15], but is claimed to be much faster. The test graphs in all experiments are ran-
dom graphs with different number of clusters, sizes, densities, and modularities.
Each experiment has been run 100 times on different random graphs.

In experiments 1–15 the random graphs were generated in the following way:
a graph with no edges is created whose vertices are divided into subsets that
correspond to the clusters; then edges are created with probability pin between
vertices in the same subset and with probability pout between vertices from dif-
ferent subsets. Experiments 1–8 compare how the performance of the algorithms
depends on the number of clusters, which vary from 2 to 9. The results indicate
that our algorithm produces always clusterings with better quality, and the dif-
ference increases when the number of the clusters grows. In experiments 9–12 the
test graphs have the same number of vertices, number of cluster, and modular-
ity, but different densities. Those experiments show that our algorithm is more
sensitive when the density decreases, and in all the cases our algorithm performs
better. In experiments 13–15, we compare the algorithms when the modularity
(the quality of the original clustering) is very low. We determined that with
modularity less than approximately 0.15 the algorithm from [6] is better, and
if the modularity is greater than 0.15 our algorithm is better. In all the above
experiments, the running time of our algorithm is considerably smaller, whereby
our algorithm is between 7 and 30 times faster than the algorithm from [6].

Finally, in experiments 16–21 the random graphs were created such that
their expected degree sequences satisfy a power law distribution. The exponent
of the density function varies from -1.0 in experiment 16 to -2.0 in experiment
21 in increments of -0.2. The results of the experiments imply that in the case of
power-law degree distributions (scale-free graphs) the quality of our algorithm
consistently beats the one of the algorithm from [6], while our time is in average
54 times smaller than theirs.

3.3 Testing on real-world data graphs

We tested our algorithms on a number of real-world graphs such as the nd.edu
domain data [2], the United States college football data [11], and the Zachary’s
karate club network [20]. In all cases our algorithm produced clustering consis-
tent with our previous knowledge of the communities. For example, we describe

Exp. # vert. # edges # clust. Qorig QCNM > Qours > Q = TCNM Tours

1 200 8930 2 .388 0 8 92 .61 .03

2 300 14891 3 .466 0 22 78 1.01 .05

3 400 21853 4 .474 0 42 58 1.24 .11

4 500 29801 5 .463 0 57 43 1.71 .23

5 600 38776 6 .446 0 70 30 2.25 .15

6 700 48706 7 .426 1 87 12 2.90 .22

7 800 59666 8 .406 2 96 2 3.71 .33

8 900 71546 9 .387 1 99 0 4.44 .35

9 200 9932 2 .298 0 8 92 .68 .04

10 200 4967 2 .299 0 27 73 .54 .03

11 200 2458 2 .298 0 50 50 .61 .02

12 200 1238 2 .295 6 92 2 .46 .00

13 400 41856 4 .176 32 63 5 1.61 .18

14 400 43607 4 .154 39 60 1 1.66 .10

15 400 47797 4 .122 89 11 0 1.84 .07

16 400 8537 4 .244 0 100 0 1.35 .02

17 400 4879 4 .273 0 100 0 1.33 .01

18 400 2653 4 .308 0 100 0 1.33 .03

19 400 1449 4 .370 0 100 0 1.36 .04

20 400 888 4 .375 0 100 0 1.35 .02

21 400 629 4 .394 0 100 0 1.34 .03

Table 3. Comparison between the performances of our algorithm and [6]. Qorig

is the modularity of the partition used during graph generation, ”QCNM >”,
”Qours >”, and ”Q =” are the percentages of the cases where the algorithm [6]
produced a better modularity, our algorithm produced a better modularity, or
both algorithms produced equal modularities, respectively. TCNM and Tours are
the times of the algorithm from [6] and ours, respectively.

in more detail here the Zachary club network. This example is a standard bench-
mark for community detection algorithms, describing the interactions between
the members of a karate club, which consequently split into two because of be-
tween the members, thereby revealing the hidden communities of the original
network. As shown on Figure 2, our algorithm classified correctly the members
of the two subgroups, except for node 10. That node has the same number of
links (five) to both communities, hence adding it to the smaller community re-
sults in a greater modularity (e.g., our partitioning has a better modularity than
the ”real” one.)

3.4 Measuring the scalability

We also tested the speed of our algorithms by running them on a 2 GHz desktop
computer on graphs of different sizes. The results are illustrated on Table 4 and
clearly show the extraordinary speed and scalability of our algorithms.

Fig. 2. Zachary’s karate club network. Members of the communities resulting
after the split are denoted by circles and squares, respectively. The communities
found by our algorithm are separated by the vertical line.

pin pout Vertices Edges Total size Time (sec.)

0.10 0.01 5,000 406,125 411,125 1.77

0.14 0.01 6,000 764,126 770,126 3.09

0.18 0.01 7,000 1,283,398 1,300,398 3.22

0.20 0.011 8,000 1,863,710 1,871,710 6.66

0.20 0.013 9,000 2,418,730 2,427,730 5.68

0.21 0.014 10,000 3,153,106 3,163,106 7.27

0.22 0.015 15,000 6,295,801 6,310,801 15.18

Table 4. Measuring the scalability of our algorithm. pin (respectively pout) is
the expected fraction of the number of in-cluster (respectively between cluster)
edges to the number of all pairs of vertices from the same set (respectively
different sets) of the partition used for graph generation.

4 Conclusion

This paper proposes a new approach for graph clustering by reducing the clus-
tering problem to a minimum cut problem and then solving the latter problem
by applying methods for graph partitioning. Our proof-of-concept implementa-
tion, based on the METIS partitioning package, demonstrated the practicality
of the approach. The changes we made to METIS were minimal and various
improvements and refinements that take into account the specifics of the clus-
tering problem, use alternative minimum cut or graph partitioning algorithms,
or apply heuristics and parameter adjustments in order to improve the accuracy
are possible and will be topics of further research.

Acknowledgement. The author is indebted to Melih Onus for helping with
the programming and most of the experiments and for many helpful discussions.
We also would like to thank the developers of METIS for making their source
code publicly available.

References

1. R.K. Ahuja, T.L. Magnanti, J.B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, 1993.

2. R. Albert, H. Jeong and A. L. Barabási. Diameter of the World Wide Web, Nature
401, 130 (1999).

3. A.L. Barabási and R. Albert. Emergence of Scaling in Random Networks. Science
286 (1999), 509-512.

4. S.T. Barnard, H.D. Simon. A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. Concurrency: Practice and Expe-
rience 6 (1994), pp. 101–107.

5. F. Chung, L. Lu. Connected components in random graphs with given degree se-
quences. Annals of Combinatorics 6, 125-145 (2002).

6. A. Clauset, M. Newman and C. Moore. Finding community structure in very large
networks, Phys. Rev. E 70, 066111 (2004).

7. P. Erdos and A. Renyi. 1959. On random graphs. Publicationes Mathematicae 6:290–
297, 1959.

8. C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network
partitions, IEEE Design Automation Conference, pp. 175-181, 1982.

9. G.W. Flake, R.E. Tarjan, and K. Tsioutsiouliklis. Graph Clustering and Minimum
Cut Trees, Internet Mathematics 1:385–408, 2004.

10. B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs,
ACM/IEEE conference on Supercomputing, 1995.

11. M. Girvan and M. Newman, Community structure in social and biological net-
works, Proc. Natl. Acad. Sci. USA 99, 7821–7826, 2002.

12. G. Karypis, V. Kumar. Multilevel graph partitioning schemes, International Con-
ference on Parallel Processing, pp. 113-122, 1995.

13. G. Karypis, V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM Journal on Scientific Computing, Vol. 20, No. 1, pp. 359392,
1999.

14. Kerninghan B. W. and Lin S. An efficient heuristic procedure for partitioning
graphs, The Bell System Technical Journal, 1970.

15. M. Newman, Fast algorithm for detecting community structure in networks, Phys.
Rev. E 69, 066133, 2004.

16. M. Newman. Finding community structure in networks using the eigenvectors of
matrices, Phys. Rev. E, 74, 036104, 2006.

17. M. Newman. Mixing patterns in networks, Phys. Rev. E 67, 026126, 2003.
18. M. Newman and M. Girvan. Finding and evaluating community structure in net-

works, Phys. Rev. E 69, 026113, 2004.
19. S. White and P. Smyth. A Spectral Clustering Approach to Finding Communities

in Graphs, Proceedings of the SIAM International Conference on Data Mining, 2005.
20. Zachary W. W. An information flow model for conflict and fission in small groups,

Journal of Anthropological Research 33, 452-473 (1977).

	A scalable multilevel algorithm for graph clustering and community structure detection
	Hristo N. Djidjev

